

Industrial DG Market Transformation Tools: DG Operational Reliability and Availability Database

Paul J. Bautista

ORNL Technical Project Officer - Patti Garland

DOE Distributed Power and Industrial DG

Program Review and Peer Review Meeting

January 29 - February 1, 2002

Arlington, VA

Operational Reliability and Availability Database Benefits

- Deliverable will be a database of operational reliability data for DG systems.
 - Current DG facility managers better understand reliability and availability performance
 - Their particular units
 - Determine how facilities compare with other DG resources
 - Availability and downtime impacts
 - Potential DG users make more informed purchase decisions
 - System reliability impacts
 - Availability and downtime impacts
 - Onsite ultra-high reliability power system design
 - Policy makers quantify potential benefits of customer-sited DG
 - Standby and back power components of tariffs
 - System reliability impacts

DG Operational Reliability and Availability Database

- Establish baseline operating and reliability data for industrial distributed generation systems
 - DG system reliability and availability is a critical element in DG market development
- Data from maintenance logs, operation records, and other available sources
 - Exhaustive collection of data from a representative sample of operating facilities
 - Methodology is based on actual customer data
 - Dependent on customer participation
 - Customer-based process creates better understanding of DG operations
 - Leverages substantial prior work by others on evaluating onsite power system reliability
- Identify and classify DG system failures and outages

DG Operational Reliability and Availability Database

- Links to DOE DER Missions
 - Document Benefits and Disseminate Information
 - Address Infrastructure, Institutional, and Regulatory Needs
- Links to DOE DER Goals
 - Address Institutional and Regulatory Barriers
- Links to DOE DER Strategy
 - Economic Benefits
 - Address Institutional Barriers
 - Reliability of Service
 - Portfolio of Technologies

DG Operational Reliability and Availability Database

- Technical Approach
 - OR performance
 - data base must address diverse prime mover technologies and applications
 - affected by design, installation, application, and O&M practices
 - data available from industry sources should be used where appropriate
 - statistics must be based on a meaningful sample size
 - Procedures for collecting, processing, and analyzing data must be tightly controlled

Operational Reliability and Availability Indices

Reliability Performance Indices	Formula
Period of Demand (POD): Measures the time the unit was	POD = PH - RSH- SOH
planned to operate.	
Availability Factor (AF, %): Measures, on a percent	AF = (PH - SOH - FOH) * 100
basis, the unit's "could run" capability. Impacted by	PH
planned and unplanned maintenance.	
Forced Outage Rate (FOR, %): Measures portion of	$FOR = \underline{FOH * 100}$
downtime due to unplanned factors.	(SH + FOH)
Scheduled Outage Factor (SOF, %): Measures percent	$SOF = \underline{SOH * 100}$
of time set aside for planned maintenance.	PH
Service Factor (SF, %): Percent of total period hours the	$SF = \underline{SH * 100}$
unit is on-line – varies due to site-related or economic	PH
factors.	
Mean Time Between Forced Outages (MTBFO):	MTBFO = <u>SH</u> .
Measures the nominal time between unscheduled forced	# Forced Outages
outages.	
Mean Down Time (MDT): Measures the nominal	MDT = SOH + FOH
duration the unit is down during maintenance events.	# Forced Outages + # Plant Outages

Project Status

- Project Accomplishments
 - Review of Prior Operational Reliability Work
 - Candidate Screening Process
 - DB Structure
 - Data Collection and Management Plan and Software
- Current Active Task
 - Data Collection and Analysis
- Pending Tasks in Scope of Work
 - Assess Reliability
 - Classification of Failure Causes
 - Reporting

- Review of Prior Work on Onsite Power Reliability
 - GRI/ARINC Cogeneration Operational Reliability Database
 - FOREMAN Software User Guide An Operations and Maintenance Data Manager and Reliability Reporting System
 - IEEE Recommended Practice for Design of Reliable Industrial and Commercial Power Systems - IEEE Std. 493-1997 (Gold Book)
 - IEEE Standard Definitions for Use in Reporting Electric Generating Unit Reliability, Availability, and Productivity
 - Reliability Survey of 600-1800 kW Diesel and Gas-Turbine Generating Units, ARINC, IEEE ICPSD 89-02
 - GE ORAP Database on large gas turbines
 - Used to identify industry standards for reliability measures and methodology

- Candidate screening process
 - Screening criteria
 - Technology category and number of units at each site
 - Completeness of O&M data
 - Prime mover
 - O&M Practice
 - Geography
 - Customer sector
 - WILLINGNESS TO COOPERATE AND PROVIDE DATA
 - Service hours required
 - 2 years of operating service
 - Sources for potential sites:
 - Databases of CHP and non-utility generators
 - Manufacturers
 - Project Developers
 - Gas Utilities
 - Industry Associations
 - Project Sponsors

- DB Technology Breakdown
 - Reciprocating Engines
 - Group 1: <100 kW
 - Group 2: 100 kW 800 kW
 - Group 3: 800 kW 3 MW
 - Fuel Cells
 - Group 4: <200 kW
 - Gas Turbines
 - Group 5: 500 kW 5 MW
 - Group 6: 5 MW 20 MW
 - Group 7: 20 MW 100 MW
 - Microturbines (noted as pre-commercial)
 - Group 8: <100 kW
 - Steam Turbines
 - Group 9: <25 MW

- Candidate screening process results to date
 - 140 sites confirmed participation
 - Some have multiple units
 - 296 units
 - Multiple fuels
 - Most are gas turbines, reciprocating engines, fuel cells and steam turbines
 - Microturbines have low operating hours and confidentiality issues
 - Will be noted as pre-commercial products at this time
 - Still pursuing additional Industrial Center leads
 - Favor sites in common location to facilitate logistics of data collection
 - >1600 facilities contacted for potential participation
 - Time-intensive

Candidate screening process results to date

- Database Content
 - Plant Configuration
 - Design and equipment features
 - Subsystem Operations
 - Prime mover subsystem operations data for each plant
 - Event Description
 - History of planned and unplanned maintenance
 - Reports
 - Plant Configuration, Subsystem Operations, and Event Description
 - Summary OR statistics for a unit, subsystem and technology
 - Facility sites, manufacturers and models are anonymous

- Data Collection and Management Software
 - Data Input Format
 - Simple and consistent with maintenance logs
 - Essential O&M data:
 - Monthly operation reports that describe unit electrical generation and engine service hours
 - Maintenance log books
 - Service reports that describe planned and unplanned outage maintenance
 - Outage summary reports
 - Service reports
 - 6 Modules
 - Facility/plant information
 - Power unit information
 - Power generation history
 - Monthly plant generation history
 - Event log data
 - Equipment failure cause list

Planned Key Milestones

- Site Identification
- DB Format & Structure
- Data collection and management software
- Detailed data collection (November 2001-March 2002)
- Supplemental sites (November 2001-February 2002)
- Reliability Assessment (February 2002-May 2002)

Paul Bautista

1401 Wilson Blvd Suite 1101 Arlington, VA 22209

703-243-4307 office 202-251-8405 cell

Email: pbautista@energynexusgroup.com